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Abstract. We study the one-dimensional three-species monomer–monomer reaction model in
the reaction-controlled limit using mean-field theory and dynamic Monte Carlo simulations.
The phase diagram consists of a reactive steady state bordered by three equivalent adsorbing
phases where the surface is saturated with one monomer species. The transitions from the
reactive phase are all continuous, while the transitions between adsorbing phases are first order.
Bicritical points occur where the reactive phase simultaneously meets two adsorbing phases. The
transitions from the reactive to an adsorbing phase show directed percolation critical behaviour,
while the universal behaviour at the bicritical points is in the even branching annihilating random
walk class. The results are contrasted and compared with previous results for the adsorption-
controlled limit of the same model.

1. Introduction

Simple models with continuous phase transitions to an adsorbing steady state where
fluctuations are absent are prototypical models for non-equilibrium critical phenomena.
These far-from-equilibrium models arise in a variety of contexts ranging from gravity-
driven flow through a porous medium to the spread of epidemics and to heterogeneous
catalytic reactions.

The critical behaviour at the transition in most of these models belongs to the universality
class of directed percolation (DP) [1], which is the simplest model with an adsorbing
transition described by an order parameter with no internal symmetry. However, recently a
number of models with continuous adsorbing transitions having critical properties not in the
DP class have been discovered [2–6]. These models, which include branching annihilating
random walks with even numbers of offspring (BAWe) [2], have similar critical properties
and thus form a distinct universality class. The distinguishing feature of this class is a
conservation modulo 2 of the number of defects [7, 8].

In one-dimensional models, this critical behaviour can be seen in models with two
equivalent adsorbing states, where the defects are domain walls between domains of the
two different states. The parity conservation law, which requires that the number of defects
always remains either even or odd, arises naturally because two domain walls are either
created or destroyed each time a domain appears or disappears. The dynamical behaviour
of these defects is very rich, showing a variety of scaling behaviours some of which have
no analogue in the simpler DP universality class.
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In order to study the role of adsorbing state symmetry in adsorbing phase transitions,
we recently introduced the three-species monomer–monomer catalytic reaction model [5].
In this model, three different species of monomers compete for lattice sites through two
fundamental dynamical processes: (a) monomer adsorption onto empty lattice sites, and (b)
the annihilation reaction of two dissimilar monomers adsorbed on nearest-neighbour lattice
sites. We previously studied the one-dimensional version of the model in the adsorption-
controlled limit, where the reaction process happens instantaneously. We discovered a
phase diagram consisting of three adsorbing phases where the entire lattice is saturated by
a single-monomer species, and a reactive phase. The phase transitions between the reactive
phase and the saturated phases are continuous and their dynamical critical properties are
those of the DP universality class. Phase transitions between saturated phases are first
order. Of particular interest arebicritical points [9] where two saturated phases meet the
reactive phase. At those points the adsorbing state is two-fold degenerate and the dynamical
critical properties are those of the BAWe universality class. We also defined and measured
three exponents associated with the dynamic behaviour of an interface between domains of
the two equivalent adsorbing phases at the bicritical point, and we conjectured that those
exponents are universal, characteristic of the BAWe class.

In this paper we investigate the reaction-controlled limit of the model, where the
adsorption process happens instantaneously. Using a mean-field analysis and dynamical
Monte Carlo simulations, we shall show that all of the qualitative features of the phase
diagram remain the same, and that all of the results for critical exponents are consistent
with those we found in the adsorption-controlled limit. Most importantly, we confirm our
conjecture concerning the universal nature of the interface dynamics exponents we defined
previously.

In section 2 we shall present results from mean-field theory for this model. Section 3
discusses our results from dynamic Monte Carlo calculations for the critical exponents of
the model, studying the critical behaviour of an isolated defect as well as the interface
between two different absorbing phases. Our conclusions are presented in section 4.

2. Mean-field results

The mean-field theory we employ is based on a cluster expansion scheme where the clusters
consist of a chain of adjacent sites. For each allowed configuration of a cluster of a given
size, we can write down exact rate equations for the time evolution of the number of
clusters with that configuration. For our problem, as we shall see below, the equations for
a cluster of a given size require knowledge of the number of clusters with one additional
size, leading to an infinite chain of equations. The approximation results from truncating
the chain of equations at clusters of a given maximum size and replacing expressions for the
numbers of larger clusters with approximate forms. This technique, employed by Dickman
[10] for studying the ZGB model [11] for CO oxidation, is essentially the same as the
Kirkwood superposition approximation used in the theory of liquids. This technique and its
generalizations [12] have been used extensively in studies of lattice models.

For our model it is useful to describe a given configuration as having ‘active’ bonds
where the two adjacent sites are occupied by monomers of different species, and ‘inactive’
bonds where both sites are occupied by the same species. The configurations can change
only where there is an active bond. Thus, the evolution equation for a particular cluster are
found by properly enumerating all the ways an active bond could produce the current cluster,
and also finding the number of ways the current configuration could disappear because an
active bond that the cluster was a part of had changed. For the purposes of deriving the
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equations, it is easiest to account separately for the disappearance and the production of
active bonds.

If our system hasN sites, we defineNA as the number of sites occupied byA monomers.
Similarly, the number ofAB pairs we denoteNAB . For this we treat the numberNBA of
BA pairs as distinct, although we expect that in the steady state the two are equal. Larger
clusters are defined in an obvious fashion.

We begin with the equations for the clusters consisting of one site. The fraction ofA

sites can change if that site is at either end of an active bond. The exact rate equation for
the number ofA monomers is
dNA
dt
= 2pA(NBC +NCB +NAB +NBA +NAC +NCA)− (NAB +NBA +NAC +NCA).

(1)

The first term on the right-hand side represents the production ofA monomers at active
bonds of any kind, the factor of 2 arising from adding monomers at either end of the bond.
The second term represents the rate thatA monomers disappear because they are part of
an active bond that is being updated. The process of picking a site and replacing anA

monomer with anA monomer is divided between the two terms. The equations forB and
C monomers are found by cyclicly permuting the indicesA, B andC.

For the two clusters of pairs of sites, we proceed in a similar fashion. The number of
AB clusters decreases every time the bond containing anAB pair is chosen for update, or
when the bond to either side of the cluster is active and chosen for update. Production of
anAB cluster can proceed by updating an active bond to produce anAB pair. The pair can
also be produced by picking the bond to the right of the pair, having theA already present
and supplying theB in the update. Similarly one can produce anAB pair by having theB
present and updating the bond to the left of theA site to produce theA. The equation for
AB pairs is thus

dNAB
dt
= pApB(NAB +NBA +NAC +NCA +NBC +NCB)−NAB

+pB(NAAB +NABA +NAAC +NACA +NABC +NACB)
−(NABA +NABC)+ pA(NABB +NBAB +NACB +NCAB +NBCB +NCBB)
−(NBAB +NCAB). (2)

If we were considering a pair occupied by the same monomer, such as anAA pair, the
process of selecting the bond occupied by theAA pair and updating it cannot occur, although
the other steps in theAB pair equation can occur. The equations forAA pairs is

dNAA
dt
= pApA(NAB +NBA +NAC +NCA +NBC +NCB)

+pA(NAAB +NABA +NAAC +NACA +NABC +NACB)
−(NAAB +NAAC)+ pA(NABA +NBAA +NACA +NCAA +NBCA +NCBA)
−(NBAA +NCAA). (3)

The equations for larger clusters (of sizeM) are similar in structure to these. We change
our notation slightly and denoteN(M)(α1α2 . . . αM) as the number of clusters of sizeM
consisting of the configuration{α1α2 . . . αM} where eachαi is A, B, or C. The equation of
motion for a sizeM cluster is

dN(M)(α1 . . . αM)

dt
=

M−1∑
i=1

pαipαi+1

∑
β 6=γ

N(M)(α1 . . . αi−1βγαi+1 . . . αM)
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Figure 1. Phase diagram showing three
saturated phases (indicated by the letters), and
a reactive phase (the unlabelled centre region).
Full curves indicate continuous transitions.
Broken curves indicate first-order transitions.
Bicritical points, shown as full circles, occur
where two critical lines meet a first-order line.
The site approximation is shown as a dotted
curve and the pair approximation as a chain
curve.

−
M−1∑
i=1

(1− δαi ,αi+1)N
(M)(α1 . . . αM)

+pα1

∑
β 6=γ

N(M+1)(βγ α2 . . . αM)−
∑
β 6=α1

N(M+1)(βα1 . . . αM)

+pαM
∑
β 6=γ

N(M+1)(α1 . . . αM−1βγ )−
∑
β 6=αM

N(M+1)(α1 . . . αMβ). (4)

Despite the simple form of these equations and their close resemblance to equations for
two-component models that can be solved exactly [13] and nearly exactly [14], we have not
succeeded in solving the set of equations in closed form. As figure 1 shows, the Kirkwood
superposition approximation for clusters of size 2 and larger, whereNAB = NANB ,
compares poorly with the Monte Carlo results that will be presented below. Improving
the approximation to keep the pairs of sites, and usingNαβγ = NαβNβγ /Nβ improves
the agreement somewhat. However, even going to the level of triples of sites, which
was sufficient [5] to obtain a qualitative agreement with the Monte Carlo data in the
adsorption-controlled limit, failed to produce the coexistence line between the two saturated
phases.

The failure of this mean-field approach to produce a realistic position for the bicritical
point is linked to the fact that the probability of observing a long cluster of sites all filled
with one species, which is approximated in this cluster approach by the probability of a
smaller cluster raised to a power, will decay exponentially with the size of the cluster.
However, the simulations presented in this paper and in previous work [5] clearly show
that at the transitions large domains of each species are present in the steady state, with the
fundamental dynamical variables being the domain walls.

Individual large domains do not necessarily cause the mean-field theory to fail, since a
similar procedure applied to some monomer annihilation models [13, 14] and cooperative
sequential adsorption models [15] yields exact results because the cluster equations close.
However, the spatial correlations in those models are very different from ours. The
adsorption models have short-ranged correlations, while the monomer annihilation models
have long-ranged correlations that result from a simple linear diffusion process. In this
model, the long-range correlations are stronger than those produced by simple diffusion, so
mean-field theory based on small clusters is not as successful here. This lack of convergence
of mean-field models has been seen in other one-dimensional lattice models [12]. There
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it was ascribed to having the same phase diagram in all dimensions, which is clearly a
restatement of the assumed range of correlations.

3. Simulations

To study the critical properties of the three-species monomer–monomer model we used time-
dependent Monte Carlo simulations. This well-established method is a form of ‘epidemic’
analysis [16] in which the average time evolution of a particular configuration that is very
close to an adsorbing state (defect dynamics), or very close to a minimal width interface
between two different adsorbing states (interface dynamics), is measured by simulating a
large number of independent realizations. Using this technique we located critical and
bicritical points and determined the universality classes of the transitions.

In the reaction-controlled limit we are studying, reactions occur only between the
nearest-neighbour pairs of dissimilar monomers, that is only between monomers connected
by an active bond. Near the continuous phase transitions the number of active bonds is very
small. Thus, a traditional Monte Carlo algorithm that picks a bond at random and attempts
to react with the monomers is inefficient because most bonds chosen are inactive and no
change occurs. Instead, we use a variable time algorithm in which a bond is randomly picked
from a list of active bonds, thereby assuring that the reaction will occur. The reacting pair
of monomers immediately desorb and then two new monomers immediately adsorb in their
places. The species of the new monomers are chosen randomly according to the relative
adsorption rates{pα}. The time elapsed during a step is 1/nb(t) wherenb(t) is the total
number of active bonds at that time. Thus, on average there is one attempted adsorption
per bond, or per lattice site, per unit time. We always start with a lattice large enough to
ensure that the active region never reaches a boundary; it is effectively an infinite lattice.

During the simulations at the critical point we measured the survival probabilityP(t),
i.e. the probability that the system had not reached an adsorbing state by timet , the average
number of active bonds per run〈nb(t)〉, and the average mean-square size of the active
region per surviving run〈R2(t)〉. At a continuous adsorbing phase transition ast → ∞
these dynamical quantities show power-law behaviour

P(t) ∼ t−δ 〈nb(t)〉 ∼ tη 〈R2(t)〉 ∼ t z. (5)

The critical exponentsδ, η, andz characterize the universality class of the phase transition.
Precise estimates of the location of the critical point and of the exponents can be made

by examining the local slopes of the curves of the measured quantities on a log–log plot.
For example, the effective exponentδ(t) defined as

−δ(t) = {ln[P(t)/P (t/b)]/ ln b} (6)

is a numerical approximation of the local slope of the survival probability. In our numerical
studies we takeb = 5. Similar expressions defineη(t) and z(t). At the critical point, a
graph of the local slope versust−1 should extrapolate ast−1→ 0 to the critical exponent.
The correction to scaling is expected to be linear int−1†. Away from the critical point, the
local slope should curve away from the critical point value ast−1→ 0.

The results of our simulations near the phase transition to theC saturated phase at
pAB = 0.5 are shown in figure 2. These data were extracted from 4×105 independent runs
of up to 104 time steps at each parameter value. We find a criticalC monomer adsorption
rate of p̃C = 0.3673(1), and that the critical exponents areδ = 0.155(5), η = 0.310(5),

† Actually, this statement is known to be true only for directed percolation [20] but it seems to also be true [3]
for the BAWe universality class.
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Figure 2. Effective exponents using equation (6)
with b = 5 for the defect dynamics near the critical
point at pAB = 0.5 on the curve where theC
poisoned phase meets the reactive phase. From top
to bottom, the five curves in each panel correspond
to pC = 0.3671, 0.3672, 0.3673, 0.3674, and
0.3675, with the middle curve corresponding to the
critical point.

and z = 1.260(10). These values are consistent with our expectation that this transition
should be in the DP universality class, for which the exponents are [17]δ = 0.1596(4),
η = 0.3137(10), andz = 1.2660(14). Our values for the exponents also satisfy the scaling
law [16] 4δ + 2η = z to within the quoted errors.

The values for all of the exponents we find are slightly lower than those found from
series expansion studies [17]. None of the dynamic Monte Carlo studies in the literature
examining the critical exponents using local slope analysis include any discussion of how the
uncertainties in the exponents are determined. Also, the errors quoted are often considerably
smaller than ours even though less data were used. We surmise that the most common error
determination involves an eyeball estimate based on the scatter in the local slope curve, or
by least-squares fits to the curve. However, error estimates derived from least-squares fits to
the local slope cannot be relied on because of the strong correlation between values of the
slope at later times on the values at earlier times. Also, there is an uncontrolled systematic
error if the critical point value is not known precisely.

We have therefore paid close attention to determining the error. We divided our data
into 10 equal sets of 4× 104 trials. With each data set we independently determined the
exponentz by two methods: a least-squares fit to the local slope to extrapolate the local
slope tot−1 = 0, and a linear least-squares fit to plots of lnR2 versust−1. The results from
each of the 10 independent data sets are combined to give unbiased estimates of the mean
and error for the exponent.

In this analysis we found that there was a substantial variation in the value ofz found
depending on whether data from short times are used. Using the local slope data for times
of t > 1000, t > 5000, andt > 7500 for the 10 data sets gavez = 1.256(1), 1.270(5),
1.280(14) respectively. While the short-time data gave a very small error, this is an artefact
of using a large amount of data. There is clearly a systematic drift in the value (towards
the series expansion value) as the data from shorter times are dropped. Similarly, the least-
squares fits to lnR2 to a form z ln t + a/t + b. gavez = 1.256(3) when fitting data for
t > 1000 andz = 1.272(5) when using only data fort > 5000. Unfortunately the data for
t > 5000 span only about13 of a decade in time and so we cannot extrapolate further than
that. The longer time data give values closer to that found by series expansion methods,
and in both methods of analysis we find statistical errors that are considerably larger than
those quoted in other Monte Carlo studies that use less data and shorter times than we
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Figure 3. Effective exponents for the defect
dynamics near the bicritical point. From bottom
to top, the three curves in each panel correspond
to pC = 0.201, 0.2015, and 0.202, with the
middle curve corresponding to the bicritical
point.

adopted here. This exercise points out the potential danger for systematic error in this kind
of dynamic Monte Carlo study. The errors we quote above for the exponents are derived
from thet > 1000 data sets but have been expanded to account for the observed systematic
drift we see.

We also studied the dynamics near the bicritical point atpAB = 0.5, where theA-
saturated andB-saturated phases coexist. Since there are two symmetric saturated phases,
the dynamics at the bicritical points are much richer than at critical points. We used two
distinct types of epidemic analysis to study the dynamics there.

The first type of epidemic analysis we used to study the bicritical dynamics is analogous
to what was described above for the dynamics at the critical point. In this analysis, the
average time evolution of a configuration with a single defect in an otherwise adsorbing
state was measured. Using an initial condition of a singleB monomer in an otherwise
A-saturated phase, we measured the same three quantities as before. In addition, we also
measured the average number ofB monomers present〈nB(t)〉. This quantity is expected
to scale in the limitt → ∞ as 〈nB(t)〉 ∼ tη0 . The characteristic exponentη0 is not
independent, but is related to the other dynamic exponents by the scaling law [6]

η0 = z/2− δ. (7)

Nevertheless, it is useful to measureη0 as a numerical check on the other exponents.
The local slope data for the four bicritical defect dynamics exponents are shown in

figure 3. These results were calculated using 106 runs of up to 105 timesteps each. The
bicritical point is located atpC = p∗C = 0.2015(5), and the exponents areδ = 0.285(5),
η = 0.000(5), z = 1.15(1), and η0 = 0.29(1). These values satisfy the scaling law (7)
and indicate that the bicritical dynamics falls in the BAWe universality class, for which the
exponents areδ = 0.285(2), η = 0.000(1), andz = 1.141(2) [3].

The second type of epidemic analysis that we used to study the dynamics at the bicritical
point measures the average time evolution of a minimal width interface between semi-
infinite domains of the two different adsorbing states [5]. The simulations are started with
a single active bond joining domains ofA andB monomers, and the trial is stopped if the
interface between the domains collapses back to a single active bond. We thus measure
three dynamical quantities analogous to those for the defect dynamics: the probability that
at timet the interface has not yet collapsed back to its minimum width, the number of active
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Figure 4. Effective exponents for the interface
dynamics near the bicritical point withb = 5.
From bottom to top, the three curves in each
panel correspond topC = 0.201, 0.2015, and
0.202, with the middle curve corresponding to the
bicritical point.

bonds, and the mean square size of the interface. These are characterized at the bicritical
point by the exponentsδ′, η′ andz′ in analogy with equation (5).

Figure 4 shows the local slope results for these three quantities. The slopes were derived
from 107 independent runs each lasting up to 105 timesteps. From these results we find
δ′ = 0.72(2), η′ = −0.43(2) and z′ = 1.150(15). The values of these exponents are
consistent with those measured previously [5, 6], and confirm the conjecture [5] that these
numbers are universal characteristics of the BAWe dynamics. The value of the dynamic
exponentz or z′ describing the size of the active region during surviving runs, is the same
in both defect and interface dynamics simulations. Furthermore, although the exponentsδ

and η are different in the two cases, their sums, which govern the time evolution of the
number of dissimilar pairs in just the surviving runs, are equal

δ + η = δ′ + η′.
This shows that the critical spreading of the active region for models with two symmetric
adsorbing states is universal, independent of whether defect or interface dynamics is being
considered. A similar result holds for some one-dimensional systems with infinitely many
adsorbing states [18].

4. Summary

We have studied the one-dimensional three-species monomer–monomer reaction model in
the reaction-controlled limit. As in our study [5] of this model in the adsorption-controlled
limit, the phase diagram consists of a reactive phase and three adsorbing phases where
the lattice is saturated with a single species. The phase transitions between the reactive
phase and each of the saturated states are continuous, but the transitions between different
saturated phases are first order. Bicritical points exist where a first-order line separating two
adsorbing phases meets two critical lines separating the reactive phase from each of those
phases.

We constructed a mean-field cluster expansion of the model up through triplets of sites.
The approximation correctly predicted the existence of the four phases, but failed to predict
that the bicritical points occur in the interior of the phase diagram. This result differs from
the result of the same analysis for the adsorption-controlled limit of the model. In that
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case [5], at the triplet approximation the bicritical points moved off the edge of the phase
diagram and the mean-field phase diagram became qualitatively correct. We presume that if
quadruples or possibly quintuples of sites are treated in this case, the bicritical points would
move off the edge of the phase diagram and the phase diagram would become qualitatively
correct.

The dynamic critical behaviour at the transition between the reactive phase and a
poisoned phase is in the DP universality class, but at the bicritical points, where there
are two equivalent poisoned states, the dynamic critical behaviour is in the BAWe class.
Thus, the universality class of the transition changes from DP to BAWe when the symmetry
of the adsorbing state is increased from one to two equivalent noiseless states. Furthermore,
we have shown that having a symmetry in the adsorbing states introduces a richness into the
dynamics that is not possible if there is a unique adsorbing state. In particular, the critical
dynamics of the interfaces between two different adsorbing states shows a sensitivity to
how the dynamics is defined, and the survival probability of fluctuations in the size of the
interface from its smallest value is described by a new universal exponentδ′. However, the
critical spreading of the reactive region, be it a defect in a single phase or a domain wall
between phases, appears to be insensitive to the choice of initial conditions. This appears
to result from the fact that large reactive regions are insensitive to whether the reactive
regions are bounded by the same or different saturated phases. We do not expect this result
to be true in higher dimensions where the entropy of domain walls can play a role and
non-universal critical spreading has been observed in other models [19].

Thus, in conclusion, both the qualitative phase diagram and the universality classes of
the critical and bicritical points in the model are equivalent in the reaction- and adsorption-
controlled limits of the three-species monomer–monomer reaction model. We confirmed
our previous conjecture that the exponents describing the asymptotic behaviour of those
dynamics are universal numbers characteristic of the BAWe class. Since these two limits
correspond respectively to a zero reaction rate and infinite reaction rate, we predict that any
finite reaction rate version of the model will also be equivalent.
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